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Abstract

This paper uses dynamic programming to investigate when contestants should use lifelines or when they should just stop
answering in the TV quiz show ‘Who wants to be a millionaire?’. It obtains the optimal strategies to maximize the expected
reward and to maximize the probability of winning a given amount of money.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

‘Who wants to be a millionaire?’ is a successful
television game show in many countries. One con-
testant addresses 15 multiple-choice questions in a
row. In each step, a question and four possible
answers are shown. After being shown the question,
the contestant can decide to stop playing and keep
the money accumulated up till then, and the game
is over, or to answer the question. If they decide
to stay in the game, they can use up to three lifelines
to answer the question. Each lifeline may only be
used once during a contestant’s entire game. These
lifelines are:

• Lifeline 1 or the 50:50 option: two of the three
incorrect answers are removed.
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• Lifeline 2 or phone a friend: the contestants may
speak to a friend or relative on the phone for
30 s to discuss the question.

• Lifeline 3 or ask the audience: the audience votes
with their keypads on their choice of answer. The
result of this poll is listed in percentages and
shown to the contestant.

There are two stages (‘‘guarantee points’’) where
the money is banked and cannot be lost even if the
candidate gives an incorrect response. Those ques-
tions are the 5th one and the 10th one.

The decision of when to stop playing or when to
use the lifelines should be treated rationally,
although contestants rarely seem to make such
rational decisions. In this paper, we address the
problem of when to stop playing and when to use
the lifelines as a dynamic programming (DP for
short) problem and the optimal strategies are iden-
tified. The probabilities of correctly answering are
based on observation of the Spanish game and the
.

mailto:perea@us.es
mailto:puerto@us.es


806 F. Perea, J. Puerto / European Journal of Operational Research 183 (2007) 805–811
empirical model. There have been some approaches
to the mathematical analysis of the game using sim-
plified versions and as an educational resource in
classrooms, for instance Cochran (2001) and Rump
(2001). For other examples on the use of DP to ana-
lyze other contests see Thomas (2003), who analyzes
‘The weakest link’ or Sniedovich (2005) and Smith
(2007) for all sorts of board games. The interested
reader is also referred to the analysis of the HI-
LO game in Freeman (2001) and of Cricket in
Clarke and Norman (2003) and the references there.
Our formulation of ‘Who wants to be a millionaire?’
works for all existing tables of prices of the game.
We give the results for the Spanish version in
2003, where the monetary values of the questions
were 150, 300, 450, 900, 1800, 2100, 2700, 3600,
4500, 9000, 18000, 36000, 72000, 144000 and
300000 Euros, respectively.

The rest of the paper is organized as follows: Sec-
tion 2 shows the general mathematical model
(states, feasible actions, rewards, transition func-
tion, probabilities of answering correctly and their
estimation). We present in Section 3 the description
of the two particular models to be studied in this
paper, in which we want to maximize the expected
reward and the probability of reaching and cor-
rectly answering a given question respectively. To
finish, Section 4 presents some concluding remarks
based on simulations of how to play in a dynamic
way.
Table 1
Immediate versus assured rewards

r0 0 r�0 0
r1 150 r�1 0
r2 300 r�2 0
r3 450 r�3 0
r4 900 r�4 0
r5 1800 r�5 1800
r6 2100 r�6 1800
r7 2700 r�7 1800
r8 3600 r�8 1800
r9 4500 r�9 1800
r10 9000 r�10 9000
r11 18000 r�11 9000
r12 36000 r�12 9000
r13 72000 r�13 9000
r14 144000 r�14 9000
r15 300000 r�15 300000
2. Basic ideas

In the game, the contestant makes a decision
each time a question and four possible answers are
shown. The planning horizon is finite, there are
N = 16 stages, where the 16th stage stands for the
situation after answering question number 15 cor-
rectly. To make a decision, contestants have to
know the index of the question they are facing
and the lifelines they have already used. The history
of the game is summarized in this information. Let
S be the set of state vectors, whose elements are
of the form s = (k, l1, l2, l3). Variable k is the index
of the current question and

li ¼
1 if lifeline i may be used;

0 if lifeline i was already used:

�
ð1Þ

Let AðsÞ denote the set of feasible actions in state s.
AðsÞ depends on the question index and the lifelines
left. If k = 16, the game is over and there are no fea-
sible actions. If k 6 15, the contestant has several
possibilities:

• To answer the question without using lifelines.
• To answer the question employing one or more

lifelines. In this case, contestants must also spec-
ify the lifelines they are going to use, remember-
ing that each lifeline may only be used once
during the whole game.

• To stop and quit the game.

If the player decides to stop, the immediate
reward is the monetary value of the last question
answered. If the candidate decides to answer, the
immediate reward is a random variable and depends
on the probability of answering correctly. If the can-
didate fails, the immediate reward is the last guaran-
tee point reached before failing. If the candidate
chooses the correct answer, there is no immediate
reward and he or she goes on to the next question,
and the reward is the expected (final) reward from
the resulting state.

Denote rk the immediate reward if the candidate
decides to quit the game after answering question k

correctly, and denote r�k the immediate reward if the
candidate fails in question k + 1. The values of rk

and r�k are shown in Table 1.
After a decision is made, the process proceeds to

a new state.

• If the contestant decides to stop at a question or
answers it incorrectly, the game is over.

• If the contestant decides to play and chooses the
correct answer, there is a transition to another



Table 2
Correction factors

k c1
k c2

k c3
k

1 0 0 0
2 0.672 0.527 0.745
3 0.698 0.547 0.773
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state tðs; aÞ ¼ ðk þ 1; l01; l
0
2; l
0
3Þ 2 S, where the

lifeline indicators l0i are

l0i ¼
li � 1 if lifeline i is used in question k;

li otherwise:

�

4 0.707 0.554 0.783
5 0.711 0.557 0.788
6 0.714 0.559 0.791
7 0.716 0.561 0.793
8 0.717 0.562 0.795
9 0.718 0.563 0.796

10 0.719 0.563 0.796
11 0.719 0.564 0.797
12 0.720 0.564 0.798
13 0.720 0.564 0.798
14 0.721 0.565 0.799
15 0.721 0.565 0.799
It is an assumption of the model that the
probability of success is dependent on the stage.
We further assume that the probabilities can be
influenced by using lifelines, which are supposed
to be helpful (i.e. to increase the probability of
answering correctly).

One of the cornerstones in the resolution of the
actual problem is to get a good estimate of the prob-
abilities in the decision process. For a realistic esti-
mation, one would need detailed data: for each
question and for each possible combination of life-
lines, there should be a certain number of candi-
dates who answered correctly and of those who
failed, and this number should be high enough to
estimate the probabilities. The actual data are only
available for approximately 40 games broadcast
on the Spanish TV, and, of course, for most combi-
nations of lifelines there are no observations, mak-
ing it impossible to give an estimate of all the
probabilities. Nevertheless, this lack of data is
solved as follows.

Let p�k denote the probability of answering cor-
rectly without using any lifeline and pi

k be the prob-
ability of correctly answering question k using the
ith lifeline. From the available data, we performed
a constrained linear regression analysis by using
the ‘‘least squares’’ so that all probabilities lie
between 0 and 1. This way we obtain a model
pk = c + m(k � 1) where c 6 1 and c � 14m P 0,
pk representing the probabilities p�k , p1

k , p2
k or p3

k .
The resultant regression lines and their respective
r2 parameters are

p�k ¼ 0:996� 0:051ðk � 1Þ; r2 ¼ 0:941;

p1
k ¼ 1:000� 0:037ðk � 1Þ; r2 ¼ 0:883;

p2
k ¼ 1:000� 0:029ðk � 1Þ; r2 ¼ 0:858;

p3
k ¼ 1:000� 0:041ðk � 1Þ; r2 ¼ 0:865:

ð2Þ

The goodness of fit was quite satisfactory for each
regression line, as in all of them the corresponding
values of r2 were close to 1. Because of that, in the
rest of the paper we will consider the estimated val-
ues of p�k and pi

k from their regression lines,
i = 1,2,3.

To estimate the probabilities of correctly answer-
ing a question using several lifelines, we assume that
there exists a multiplicative relationship between the
probability of failing in a given state using lifeline i
and the probability of failure without lifelines. This
relation is such that the probability of failing
decreases by a fixed factor ci, 0 < ci < 1 i = 1,2,3.
Mathematically:

qi
k ¼ q�kci

k () pi
k ¼ 1� ð1� p�kÞci

k; ð3Þ
where q�k ¼ 1� p�k and qi

k ¼ 1� pi
k, i = 1,2,3,

k = 1, . . . , 15. We assume further that the combina-
tion of several lifelines modifies the original proba-
bilities p�k ; q

�
k in a multiplicative way, by multiplying

the different ‘c’ constants. This simplification allows
us to give an empirical expression of the probabili-
ties. Under this assumption, we can use the informa-
tion we have about the candidates to estimate the
probabilities of answering correctly with any feasible
combination of lifelines.

From Eq. (3) and the values obtained from the
regression lines in (2), the values of the ‘c‘ constants
are derived, see Table 2.

3. The mathematical models

In this section we present the two models ana-
lyzed in this paper. The first one, Section 3.1, is
intended to maximize the expected reward. The sec-
ond one, Section 3.2, finds the optimal strategy so
that the probability of reaching and correctly
answering a given question is maximized.

3.1. Maximizing the expected reward

Let pa
s denote the probability of answering cor-

rectly if in state s 2 S action a 2AðsÞ is chosen.



Table 3
Expected reward in the 8 possible terminal states of model 1

State f (State)

15,1,1,1 231858.5
15,0,0,1 144000
15,0,1,0 181854
15,0,1,1 205549
15,1,1,0 214763.7
15,1,0,1 179493.6
15,1,0,0 149262
15,0,0,0 144000

Table 4
Solution to model 1 showing the optimal strategy at each
question (QI) and the expected reward for the basic model
(column 1)

QI c � m(k � 1) c + sc � m(k � 1) c � sc � m(k � 1)

1 No lifelines No lifelines No lifelines
2 No lifelines No lifelines No lifelines
3 No lifelines No lifelines No lifelines
4 No lifelines No lifelines No lifelines
5 No lifelines No lifelines No lifelines
6 No lifelines No lifelines No lifelines
7 No lifelines No lifelines No lifelines
8 No lifelines No lifelines Audience
9 50:50 Audience 50:50

10 Phone Phone Phone
11 No lifelines No lifelines No lifelines
12 Audience No lifelines No lifelines
13 Stop 50:50 Stop
14 – Stop –

ER 2386.7 3350.7 1683.4
QI c � (m + sm)(k � 1) c � (m � sm)(k � 1)

1 No lifelines No lifelines
2 No lifelines No lifelines
3 No lifelines No lifelines
4 No lifelines No lifelines
5 No lifelines No lifelines
6 No lifelines No lifelines
7 No lifelines No lifelines
8 Audience No lifelines
9 50:50 Audience

10 Phone Phone
11 No lifelines No lifelines
12 No lifelines No lifelines
13 Stop 50:50
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We assume that pa
s only depends on the question

index and on the lifelines that are used "s 2 S,
8a 2AðsÞ.

Let f(s) be the maximum expected reward that
can be obtained starting at the state s = (k, l1, l2, l3).
We can evaluate f(s) in the following way. The max-
imum expected reward from s on is the maximum
among the expected rewards that can be obtained
from all the possible states that can be achieved
from s. At that point, we can either quit the game,
thus ensuring rk, or go to the next question (assume
indexed by k + 1). In the latter case, if we choose an
action a 2AðsÞ then we answer correctly with prob-
ability pa

s and fail with probability ð1� pa
s Þ. The

reward when failing is given by the assured prior
reward in question k + 1, i.e. r�k . On the other hand,
answering question k + 1 correctly produces a tran-
sition to the next question with the remaining life-
lines. Denote by t(s,a) the transition function that
gives the new state when action a is chosen in state
s. Then, from that point on the expected reward is
f(t(s,a)). To summarize, the expected reward under
action ‘a’ is

pa
s f ðtðs; aÞÞ þ ð1� pa

s Þr�k : ð4Þ
Hence

f ðsÞ ¼ max
a2AðsÞ

rk; pa
s f ðtðs; aÞÞ þ ð1� pa

s Þr�k
� �

: ð5Þ

In order to get the maximum expected reward we
have to evaluate the functional f in the departing
state. The values of f can be recursively computed
by backward induction once we know the value of
f at any feasible state of the terminal stage, that is,
being in question 15 with any possible combination
of lifelines. These values are easily computed and
their values are shown in Table 3.

Example 3.1. The maximum expected reward when
starting in question 1 with all lifelines available,
f(1, 1,1,1), is equal to 2386.7 and an optimal
strategy to achieve this expected reward is shown
in the first column of Table 4.
14 – Stop

ER 2017.7 2885.9

The other columns show the sensitivity of the solution, by
changing the two regression coefficients (c and m) by one stan-
dard deviation.
In order to see the robustness of the given solu-
tion, we analyze the optimal strategies when the
model is modified by changing each coefficient by
its value plus or minus one standard deviation.
The optimal strategies for each of those four new
models are shown in Table 4.

One can observe from Table 4 that adding (sub-
tracting) one standard deviation to c(m) results in
increasing the probability of correctly answering.
Hence, the resulting strategies become more risky
delaying the use of lifelines and reaching the final
question. On the other hand, subtracting (adding)
one standard deviation to c(m) diminishes probabil-



Table 5
Optimal strategies for w = 1–5 and the corresponding probabilities of success

QI w = 1 w = 2 w = 3 w = 4 w = 5

1 All lifelines No lifelines No lifelines No lifelines No lifelines
2 All lifelines Audience No lifelines No lifelines
3 50:50, phone 50:50 No lifelines
4 Phone, audience 50:50
5 Phone, audience

Pr. 1 0.982 0.916 0.812 0.680

Table 6
Probabilities of success for w = 6–15. In each case, the strategy is
to use no lifelines until question w � 2, and then use the lifelines
in the order ‘Audience, 50:50, phone’

QI w = 6 w = 7 w = 8 w = 9 w = 10

Pr. 0.538 0.400 0.278 0.179 0.107

QI w = 11 w = 12 w = 13 w = 14 w = 15
Pr. 0.058 0.029 0.013 0.005 0.002
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ities of correctly answering and the strategies tend to
use lifelines soon after question 8.

3.2. Reaching a question

In this section we address a different objective,
with a correspondingly different recurrence relation,
to the contest. Now we want to find the optimal
strategy in order to maximize the probability of
reaching and correctly answering a given question.
Moreover, we also give the probability of doing that
if we follow an optimal strategy.

Let us define the new problem. Recall that a state
s is defined as a four-dimensional vector, as before

s ¼ ðk; l1; l2; l3Þ:

Let w, w = 1,2, . . . , 15, be a fixed number. Our goal
is to correctly answer question number w. We de-
note by f(s) the maximum probability of reaching
and correctly answering question number w, start-
ing in state s.

We evaluate f(s) in the following way. The max-
imum probability of reaching and correctly answer-
ing the question number w starting in state s is the
maximum among the possible actions a 2AðsÞ of
the probability of answering the current question
correctly times the maximum probability of getting
our goal from the state tða; sÞ; a 2AðsÞ, where
t(a, s) is the transition state after choosing the action
a in the state s if answering correctly.

Then, we have

f ðk; l1; l2; l3Þ ¼ max
06gi6li
gi2Z 8i

fpk;g1;g2;g3
� f ðk þ 1; l1 � g1;

l2 � g2; l3 � g3Þg;

where pk,g1,g2,g3 is the probability of correctly
answering the kth question, using lifeline i if
gi = 1, i = 1,2,3.

The function f is a recursive functional, therefore
to obtain its evaluation by backward induction we
need its value at each state in the terminal stage.
Notice that the goal in this formulation is to cor-
rectly answer question w. Thus, the probability of
having done so if we are already at question w + 1
is clearly 1. Hence, we have

f ðwþ 1; l1; l2; l3Þ ¼ 1 8li 2 f0; 1g; i ¼ 1; 2; 3:

Once we have the evaluation of the functional at the
terminal stage, the solution of this model is f

(departing state).
The optimal strategies and the probabilities of

reaching and answering correctly any possible ques-
tion w = 1, . . . , 15 are shown in Tables 5 and 6. Note
that the strategies have the same pattern, that is,
they all use lifelines at the end and, from goal
w = 6 on, in the same order: audience, 50:50 and
phone.
4. Further analysis of the game

In previous sections, the problem has been ana-
lyzed in a static way, since it was assumed that all
the probabilities are determined ‘‘a priori’’, that is,
without the actual knowledge of each question.
But the game is actually played changing the prob-
abilities of correctly answering each time that the
player faces the current question. For this reason,
a new approach to the problem is proposed. In this
approach we assume that the player is able to esti-
mate his/her probability of correctly answering the
current question, the probabilities of correctly



Table 7
Frequency in percentages of stopping at a given question

QI 5 9 12 13 14 15 16

Sim. 1 25.08 19.18 27.88 13.88 6.89 3.32 3.77
Sim. 2 17.15 24.58 38.81 13.64 4.49 1.05 0.28
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answering the following questions remaining
unchanged as estimated in Eq. (2).

In this analysis contestants modify at each stage
k the probability p�k of correctly answering accord-
ing to their own knowledge of the subject, having
this way a more realistic way of playing the game.
This feature has been incorporated in our computer
code so that at each stage the player can change the
probability of answering the current question cor-
rectly. Notice that this argument does not modify
our recursive analysis of the problem. It only means
that we allow variation of the probability p�k at each
step of the analysis.

4.1. Simulation

In this section we are going to show simulations
of our model of the game played in its dynamic ver-
sion. We will assume that on each actual question
the probability of correctly answering is modified
once the question is known. Suppose that the con-
testant is now facing the question kth, deciding
whether answering the question or not depending
on the degree of difficulty of the actual question.
The dynamic model assumes that the probabilities
of correctly answering the following questions, that
is from k + 1 on, are the ones estimated before. For
any k = 1, . . . , 15 let Xk be the random variable
defined via

X k :¼ Probability of correctly answering question k:

ð6Þ
In order to simplify the simulation we assume that
the probabilities of answering correctly without
using lifelines can be

• 1 if the contestant knows the right answer.
• 1

2
if the contestant doubts between two possible

answers.
• 1

3
if the contestant is sure that one of the answers

is incorrect, the other three answers being possi-
bly correct.

• 1
4

if the contestant does not know anything about
the answer and the four of them are equally pos-
sible to him or her.

In other words, X k 2 1
4
; 1

3
; 1

2
; 1

� �
. We will imple-

ment and run two different simulations, in which
the probability functions of Xk are

1. P ½X k ¼ 1� ¼ P X k ¼ 1
2

� �
¼ P X k ¼ 1

3

� �
¼ P X k ¼ 1

4

� �
¼ 1

4
8k ¼ 1; . . . ; 15:
2. But for a more realistic approach, we consider in
the second simulation that the probabilities vary
depending on the question index. That is, the
higher the index is, the more difficult the corre-
sponding question becomes. To do so we con-
sider that P ½X k ¼ 1� ¼ M1;k; P X k ¼ 1

2

� �
¼ M2;k;

P X k ¼ 1
3

� �
¼ M3;k; P X k ¼ 1

4

� �
¼ M4;k 8k ¼ 1; . . . ;

15, where M is the following matrix:

M :¼ 1

24

14 13 12 11 10 9 9 8 7 6 5 4 3 2 1

6 5 5 5 5 5 5 4 4 4 4 4 4 4 4

3 4 4 5 5 5 6 6 6 6 6 7 7 8 9

1 2 3 3 4 5 5 6 7 8 9 9 10 10 10

0
BBBBBBB@

1
CCCCCCCA

Both simulations were implemented and run
10 000 times. In Table 7 the frequencies in which
the scheme stopped at a each question for both sim-
ulations are presented. Note that no instance
stopped at questions 1,2,3,4,6,7,8,10 or 11 in
any simulation. This comes from the fact that in
those questions the risk one takes when answering
is not high enough to stop, because the contestant
is either too close to the beginning of the game or
not far enough after answering a question at a
guarantee point. Note also that stopping at ques-
tion 16 means to correctly answer question 15, that
is, to finish the game successfully. When taking into
account that the final questions are more difficult
than the first ones, one can see that the optimal
strategies stop with higher probability at questions
9,12,13 than at the beginning or at the end of the
game.

Notice that any kind of ‘‘a priori’’ probabilistic
information, based on the knowledge of the actual
player, can be incorporated into the model. This
incorporation is done by computing ‘‘posterior’’
probabilities using Bayes’ rule. It is clear that the
strategies change depending on the probabilities of
correctly answering the question that the contestant
is facing. As can be seen, depending on the simu-
lated probability, the strategies can vary from stop-
ping at the fifth question until being on the game
until the very end.



F. Perea, J. Puerto / European Journal of Operational Research 183 (2007) 805–811 811
5. Conclusion

This paper presents an analysis of the TV game
‘‘Who wants to be a millionaire?’’ based on dynamic
programming. Such analysis was used to analyze
two situations: one in which the objective is to max-
imize the expected reward and another in which the
goal is to maximize the probability of reaching a
given question, meaning to win a given amount of
money.

Dynamic programming analysis shows that stop-
ping at question 13 and using the lifelines not before
question 9 is optimal to maximize the expected
reward. The robustness of such optimal strategy is
also analyzed. In another model of the game, we
prove also by dynamic programming techniques
that when one wants to maximize the probability
of winning a given amount of money, the optimal
strategies consist of using the lifelines at the end
of the game in a given order, see Table 5.

To finish the paper we incorporate to our analysis
a new feature: the possibility of changing at each
stage the probability of correctly answering the cur-
rent question. Such model was tested in two different
cases: (1) when the probabilities of correctly answer-
ing are uniform and do not depend on the question
index and (2) when the questions become more diffi-
cult as the game approaches the final question. Two
interesting results can be stated: contestants should
not stop when they are before question 4, nor after
the two guarantee points, as the risk they take when
answering those questions after the guarantee points
is not high enough to make them stop.
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